skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pu, Yewen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The usage of Rational Speech Acts (RSA) framework has been successful in building pragmatic program synthesizers that return programs which, in addition to being logically consistent with user-generated examples, account for the fact that a user chooses their examples informatively. We present a general method of amortizing the slow, exact RSA synthesizer. Our method first compiles a communication dataset of partially ranked programs by querying the exact RSA synthesizer. It then distills a global ranking -- a single, total ordering of all programs, to approximate the partial rankings from this dataset. This global ranking is then used at inference time to rank multiple logically consistent candidate programs generated from a fast, non-pragmatic synthesizer. Experiments on two program synthesis domains using our ranking method resulted in orders of magnitudes of speed ups compared to the exact RSA synthesizer, while being more accurate than a non-pragmatic synthesizer. Finally, we prove that in the special case of synthesis from a single example, this approximation is exact. 
    more » « less
  2. null (Ed.)
  3. A key challenge for reinforcement learning is solving long-horizon planning problems. Recent work has leveraged programs to guide reinforcement learning in these settings. However, these approaches impose a high manual burden on the user since they must provide a guiding program for every new task. Partially observed environments further complicate the programming task because the program must implement a strategy that correctly, and ideally optimally, handles every possible configuration of the hidden regions of the environment. We propose a new approach, model predictive program synthesis (MPPS), that uses program synthesis to automatically generate the guiding programs. It trains a generative model to predict the unobserved portions of the world, and then synthesizes a program based on samples from this model in a way that is robust to its uncertainty. In our experiments, we show that our approach significantly outperforms non-program-guided approaches on a set of challenging benchmarks, including a 2D Minecraft-inspired environment where the agent must complete a complex sequence of subtasks to achieve its goal, and achieves a similar performance as using handcrafted programs to guide the agent. Our results demonstrate that our approach can obtain the benefits of program-guided reinforcement learning without requiring the user to provide a new guiding program for every new task. 
    more » « less
  4. null (Ed.)
    The Abstraction and Reasoning Corpus (ARC) is a set of tasks that tests an agent’s ability to flexibly solve novel problems. While most ARC tasks are easy for humans, they are challenging for state-of-the-art AI. How do we build intelligent systems that can generalize to novel situations and understand human instructions in domains such as ARC? We posit that the answer may be found by studying how humans communicate to each other in solving these tasks. We present LARC, the Language-annotated ARC: a collection of natural language descriptions by a group of human participants, unfamiliar both with ARC and with each other, who instruct each other on how to solve ARC tasks. LARC contains successful instructions for 88% of the ARC tasks. We analyze the collected instructions as ‘natural programs’, finding that most natural program concepts have analogies in typical computer programs. However, unlike how one precisely programs a computer, we find that humans both anticipate and exploit ambiguities to communicate effectively. We demonstrate that a state-of-the-art program synthesis technique, which leverages the additional language annotations, outperforms its language-free counterpart. 
    more » « less
  5. null (Ed.)